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ABSTRACT

The gas dynamic structures of the transport shock and the downstream

collisional relaxation layer are evaluated for partially ionized monatomic

gases. Elastic and inelastic collisional nonequilibrium effects are taken

into consideration. We account in our microscopic model of the atom for

three electronic levels. Nonequilibrium processes with respect to popula-

tion of levels and species plus temperature are considered herein. By

using an asymptotic technique the shock morphology is found on a continuum

flow basis. The asymptotic procedure gives two distinct layers in which

the nonequilibrium effects to be considered are different. A transport

shock appears as the inner solution to an outer collisional relaxation

layer in which the gas reaches local equilibrium. The results show four

main interesting points: (i) on structuring the transport shock, ioniza-

tion and excitation rates must be included in the formulation, for the

asymptotic method does not give frozen flow with respect to the population

of the ionized and excited levels, (ii) the sharp rise in electron tempera-

ture that might be expected after the transport shock is diffused to its

beginning, (iii) the collisional relaxation layer is reduced rationally

and accurately to quadrature for special initial conditions which (iv) are

obtained from new Rankine-Hugoniot relations for the inner shock. A family

of numerical examples is displayed for different flow regimes. Argon and

helium models are used in these examples.

7r·
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I. INTRODUCTION

The possibility of obtaining large gradients by compressing a gas

through a shock wave has led many researchers to study transport, transfer

and relaxation phenomena both theoretically and experimentally.

It is well known that as the strength of the shock wave becomes larger

and larger, radiative and collisional nonequilibrium effects begin to domi-

nate and the thickness of the shock is determined by the characteristic

lengths arising from such nonequilibrium processes.

1-3
Several authors have devoted their attention to the relaxation

zone behind a shock wave, taking into account different nonequilibrium

phenomena to study the ionization behind it. An excellent review in this

field is provided in Ref. 4. Jaffrin studied the transport shock in

argon considering the degree of ionization frozen and without including

an excited level in the atom model. Chubb
6

included some transport

properties and used a bimodal Mott-Smith velocity distribution function

to structure the transport shock and the relaxation zone behind it.

Clarke and Ferrari7 studied the nonequilibrium ionization due to

radiation and collision; they found a photoionized precursor in the shock

structure. More recently, Clarke and Onorato
8
structured shock waves in

monatomic gases using asymptotic arguments. They found different asympto-

tically embedded layers in which the nonequilibrium effects due to collisional

and radiative ionization are uncoupled in each layer. Further applications

extending this method are found in works by Pirri and Clarke, and Fainsworth

and Clarke.1 0

Finally, Foley and Clarke
1 1

refined the microscopic gas model of Ref. 8.

They found that the shock morphology consisted of certain asymptotically
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embedded layers: (i) a nonequilibrium precursor characterized by the

absorption of radiation, (ii) a chemically frozen and transparent transport

discontinuity, (iii) an optically transparent collisional layer characte-

rized by elastic and inelastic collisions driving the gas to equilibrium,

and (iv) a hot radiating tail in local equilibrium.

The purpose of this work is to study the transport shock and the

collisional layer in any partially ionized and excited monatomic gas. It

will be shown, using an asymptotic argument, that although both layers can

be separated asymptotically, they must be evaluated together, for they are

intimately interrelated. Furthermore our results will show that the

transport shock is not chemically frozen as considered by other authors:

Therefore ionization and excitation rates need to be included in the

formulation.

Numerical examples are performed for models of argon and helium by

using a continuum or Navier-Stokes approach, for different flow regimes.

Thermal and chemical nonequilibrium effects are included in the formulation.

The results of these calculations justify, a posteriori, the ideas

introduced in the present work.
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II. MODEL AND STATISTICS

We consider the steady, one dimensional flow of a partially ionized

and excited monatomic gas. No applied external electric or magnetic

fields are considered herein.

A. Microscopic Model

The monatomic gas atom A is modeled microscopically by three

different electronic levels, i.e. a ground level 1 which will provide

species A( 1 ) , an excited level 2 providing A(2) , and the continuum

c giving the single ionized ion A( + ) Therefore, the gas is considered

to be a mixture of atoms (both in the ground and excited levels), ions,

and electrons. The term heavy particles, denoted by subscript h , is used

when we refer collectively to atoms and ions.

Since the mass of atoms and ions is much greater than that of the

electrons, the elastic energy transfer between heavy and light species is

considered very difficult and therefore highly inefficient.

We also consider only gases that are difficult to ionize, i.e. the

ionization energy is larger than the translational energy throughout the

entire flow process. The creation of an ion by inelastic collisions will

result in the loss of an amount of energy equal to the ionization energy

by the heavy gas or the electron gas depending on which species collides

with the atom in the act of ionization. Considering the electron gas, we

have two difficult processes which oppose one another: (i) Through elastic

collisions the heavy particles and the electrons will try to equilibrate

their translational energy, and (ii) every act of ionization by electron

impact will substantially reduce the energy of the electrons.
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Our gas model also provides for an excited level which is assumed to

be very close to the continuum. Therefore excitation also requires a con-

siderable amount of energy but ionization from the excited level is then

possible with a much smaller amount of energy.

As the gas enters the shock, the transport mechanisms will convert the

initial kinetic energy into thermal energy. However, since the elastic

energy transfer between heavy particles and electrons is very inefficient,

heavy and light species will have different translational energy. A subse-

quent collisional relaxation zone will then appear in which all species come

to equilibrium.

Be Statistics

Elastic and inelastic collisions are considered in the present work.

Mathematical expressions are then needed for the cross sections for the

different types of collisions. Although few data are available for excited

atoms, the statistics used generally are not the best we could hope for.

There are two types of elastic collisions: (i) elastic collisions

between species M and A
( 2 )

, and (ii) elastic collisions between M and

A() M denoting any species A(
1

) , A(
2
) , A(

+
, or electrons. It

is known that the effective diameter for the former type of collisions is

larger than that for the latter type of collisions. However, since few

particles are in the excited level, the excitation energy being almost as

large as the ionization energy, the effect of the additional size of the

excited atom cross section should not be appreciable in the transport

properties. 1 2 1
3 Therefore, it will be assumed that the cross sections for

elastic collisions between M and A are equal to the cross sections
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for collisions between M and A

More specifically, the elastic collisions considered are: collisions

between heavy particles, collisions between electrons, and collisions be-

tween electrons and heavy species. Since collisions between particles of

the same species take place at a much faster rate than collisions between

electrons and heavy particles, and the energy transfer between these two

species is very inefficient, it is possible to define a heavy particle

temperature Th and an electron temperature Te in the thermodynamic

sense throughout the shock. Therefore, T
h

will be, in general, different

from T 
e

For the inelastic collisions, we only consider transitions by electron

impact. This is due to the fact that, since the gas is already sufficiently

ionized ahead of the shock, the most efficient mechanisms for further exci-

tation or ionization are those by electron-atom inelastic collisions. It

has been shown previously that the transport shock and the collisional

relaxation layer are transparent to any radiation. Therefore any radia-

tive effects need not be indluded in the present work. Thus, the following

parallel chemical reactions will account for the inelastic transitions:

A(
1 ) + e + A( + ) + e + e (1-c transitions) ,

A(
1 ) + e + A( 2 ) + e (1-2 transitions) , (2.1)

A(2) + e (+) + e + eA + e -* A + e + e (2-c transitions)

As a result of the aforementioned nonequilibrium rate processes, the gas

is not generally in local equilibrium with respect to population of levels

and species or temperature.

To make the problem more tractable mathematically, we now introduce



6

several a priori assumptions which will be justified a posteriori:

(a) Small ion-slip: The ion-atom elastic collision cross section due

to the charge exchange mechanism is very large, so that the ion-atom mean

free path is small compared to the shock thickness. There will then be

many collisions between atoms and ions and therefore their temperature and

velocities will be equal.5

(b) Quasi-charge neutrality: Charge separation effects have been

neglected because the Debye length is much smaller than any other charac-

teristic length. Also the induced electric field is negligible. Thus,

we assume that the ion and electron number densities are equal and there-

fore all the species have the same macroscopic velocity.

(c) Initially frozen elastic and inelastic collisions: It is

possible for the upstream flow ahead of the shock to be locally out of

equilibrium with respect to population of levels and species and/or

temperature. In that situation a precursor will appear. This nonequili-

brium precursor can be structured, for instance, by the absorption of

radiation coming from a hot layer behind the shock. Since the characteris-

tic length of this precursor is much larger than any characteristic length

of interest to us,ll the upstream flow is seen as frozen on the length

scale of the shock. Even in the case when T
h and Te are different

ahead of the shock, (Th-Te ) is small compared to its value behind the

transport shock. Since the elastic collision energy transfer is propor-

tional to that difference, we can create an artificial state of equilibrium

upstream of the shock without introducing an appreciable error. This is

done by subtracting from the elastic collision energy transfer term,

denoted by E , its numerical value at the front of the shock E(a)

The inelastic collisions can be treated in the same way, since the electron
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temperature upstream is sufficiently low to neglect the ionization and

excitation by electron impact ahead of the shock. This assumption

will be clarified later on.
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III. FORMULATION

Under the assumptions and the model as described in Section II, the

equations governing our problem are then the equations of state, continuity,

momentum, energy, electron energy, ionization and excitation rates. Let

n , n2 ne denote the number densities of atoms in the ground level,

atoms in the excited level, and electrons (or ions) respectively, u the

velocity, p the pressure, p the mass density of the mixture, a the

degree of ionization, B the degree of excitation, Tj the ionization

temperature, T
Z

the excitation temperature, R the gas constant per

unit mass of atoms, and mh tne mass of an atom (or ion). Then we have

n n
p = mh(nl+n2+ne) , n 2 nl+n2+e (3.1)

) , 2e +n n +n +n

The enthalpy per unit mass of the mixture, H , shall be written as

H =R J- Th+aT ) + aTj + BT (3.2)

Then our equations are

p = pR(Th+aTe) , (3.3)

pu = G , (3.4)

2 4 du
p + pu - p- = GV , (3.5)

i-2 4 du dx h dTh W2G I+ -R(T +) T + aRT + BRTK -u- 2 
2 h _e j 3 d-x- n d e G x- 2

(3.6)



9

wherein (3.5) and (3.6) p , Kh , K
e

are the coefficients of shear vis-

rosity of the mixture, thermal conductivity of the heavy particles, and

thermal conductivity of the electrons respectively. The electron energy

equation can be written as

3 d e e du 1 d dT T d T d
_ - _ - " -r (3.7)

2 dx u dx GRa dx K = E a dx a d'

E being the energy transfer term between heavy particles and electrons by

elastic collisions, and the other two relevant terms on the right denote

the energy transfer between the same two species by inelastic collisions,

leading to essential new effects.

Let (K ). . denote the reaction rate coefficients in the chemical

reaction between particles of the mth and nth species for transition from

the ith to the jth level. Since as discussed in Section II, the only

reactions considered are those by electron impact, we let

(· K. K ~~~~~~~~(3.8){mn) i - j (Keh)i-j 
=

i-j '

Then from (2.1) and (3.1), the population rate equations are

dci -l E 2 33 32
da G l mh {-(m) a(l-a-8) - KK 2 - I + 3 O(-

= 1 1'-c K a, + KC-

(3.9)

dB8 G- a(l-a-B) - K 2 l( aB + Kc a -2-c

(3.10)

If inelastic collisions by heavy-heavy encounters were important in

C
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the ionization and excitation processes, more terms would be required on

the right hand side of the rate equations. According to our assumptions,

transitions by heavy particle impact are negligible and therefore are not

included in the formulation.

It is expeditious to utilize the fact that the reverse reaction rate

coefficients Kj i can be expressed as functions of the different forward

reaction rate coefficients Ki -j through equilibrium considerations. Then,

from (3.9) and (3.10) we obtain

mh 1-E-BE m BE
Kc-l(Te) = Kl-c(Te) P 2 K2 (Te 2-cTe P 2 (3.11)

aE aE

1-aE-
g

K2-1 (Te) K1-2(T e) E (3.12)

where the subscript E denotes reference equilibrium conditions at p

and T . The remaining K's can conveniently be written as lengths for

gas dynamic purposes. A local characteristic length for the ionization

process is seen to be1 4

mhu
Xa Klcp(l-a-) (3.13)

Similarlv, from Ref. 5,we have expressions for the different transport

coefficients and the elastic collision energy transfer term E expressed

in terms of lengths

p = p(RTh)i/2 B , (3.14)

h = pR(RTh)I/2AKh , (3.15)

Ke = apR(RTe) / ke ' (3.16)e e ke (.6
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1E (RT /2Th-Te 1
E = (RT u X (3.17)

e

where X , XKh X'Ke , and Xe are lengths characterizing the different

transport and transfer phenomena. In the Appendix expressions are provided

for the different forward reaction rate coefficients and for the character-

istic lengths defined above as functions of the dependent variables. Thus

we have seven equations in the unknowns u ,, p p ,Th , T , a , and 

The equations will now be written in dimensionless form. We define

a dimensionless independent variable n through the relation

x

dn = X dx , n (x)dx . (3.18)

Let (T e)
b

be the electron temperature at station b inside the shock.

The significance of station b will become clear later on. Then the

following dimensionless dependent variables are found natural and appro-

priate to the problem

TT. i u[R(Te)b]
/2

TT. = 1 U P e ,(3.19)

(e-b [R(T)1 2G G[R(T 1) 2
e b e b

where T. stands for Th Te, Tj , or TI accordingly.

We substitute the relevant lengths for the transport coefficients and

the elastic collision energy transfer term into the equations and make them

dimensionless following (3.18), (3.19). We have

p = p(Th+dTe) , (3.20)

pu = 1 , (3.21)
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+^ 4 Ap ^1/2
p +u _ prha3A h

a

du
dn

V

[R(Te) bl/ 2 'e b

~^2
4 p ^1/2 du
3 X h d'n

xM Aj1/2
- P ha

xKe "p1/2
a(3

Te du 1 d
t dn a dn

XKe 1/2 dT e)

(A

1 a

T. e
]

j1/2

e
U

1 da 1 Tz
a dn aT

T.I

dB
dn ' (3.24)

KB
+ 2-c a
K1

c
l1-a-B

a

a 2

E Il,

1 dB = K1-2 
_

a dn l-c 
B 1-aE-BE

1-a-B BE

B
2-c a

K1iC 1-a-B
a

a 2 _ I2 . (3.26)

From the above equations, we see that we have four ratios of character-

istic lengths and two ratios of forward rate coefficients which could be

2(Th+aTe) + aT.
I

(3.22)

dTh

dn

dT
e

dn
W2

2R(T )eb

dT

d +dnr
1

T.
I

(3.23)

1 da =

a dUln

2
a

l-a-B 2 BE
aE

(3.25)
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converted in length ratios very easily, but we do not wish to do so here.

Now, from the definition of A and AK we can see that both

lengths are comparable and of the same order of magnitude. It is also

clear from the expressions of A and AKh that both are of the same

order of magnitude. Moreover, numerical considerations tell us that AKe

and AKh can be comparable and that A is the largest of all the lengths

introduced herein. Usually, the above lengths satisfy the following

inequalities:

AKh <A << · (3.27)Xp IKh Ke e a

Notice that since the excited and the continuum levels are considered

to be very close together, X also characterizesthe excitation process.

From the above ordering of the characteristic lengths we see that if

the problem or phenomena of interest to us occurs in a length of order

X , we can neglect all the transport effects in (3.20)-(3.26).
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IV. ASYMPTOTICS

Let us now construct a mathematical representation of our physical

model discussed in Section II-A. The gas can be represented by constructing

three limits. If m is the electron mass, let
e

(6 _ i )1 - + 
+

, (4.1a,b,c)

Tj

such that

' - OM r= 1 K2-c aT . - : 
0

(1) r, F
1

- 0(1) ,
T.]

1 ~* X~7l Kc 1-l-a-_
Tj e c

(4.2a,b,c)

the reasons behind (4.2) will appear clear as we proceed.

Notice that only one of the three limits (4.1) introduced is indepen-

dent. The last two are related through (4.2a), and 6 and T. are

connected in rl . In r
2

an additional relation is provided between two

of the three reaction rate coefficients.

From the physics of Section II, and from (4.1c) it follows that

- 0 , (4.3)

which means that the excited level is highly depopulated, i.e. because the

excited and the continuum levels are very close together, it is easier to

ionize from the excited level, rather than from the ground level, resulting

in its consequent depletion. Similarly, from our physical model and (4.1c)

it follows that
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K1-2 0(1) K2-c
2-c 0(1) , -- + X * (4.4a,b)

l1-C K1-C

From our expressions for the forward reaction rate coefficients (Appen-

dix B) and our limit construct (4.1) together with (4.2a) we can verify

the validity of (4.4). Notice that (4.3) and (4.4b) are not independent

for they are related by (4.2c).

At this point, under our limit, other dimensionless dependent

variables, e.g. Th , T
e

u , p , and p are considered 0(1). We are

now in a position to study our equations and to try to simplify them by

using the above orders of magnitude under the limits constructed.

A. Outer Solution

First consider the collisional relaxation process. The characteristic

length scaling such phenomena is seen to be A
s

defined in (3.13). We

assume that derivatives with respect to n N x/XA are 0(1) under our limit.

From the discussion of the different characteristic lengths introduced in

Section III and from (4.2b), we see that Aa is much larger than any of

the other characteristic lengths. Therefore, on studying the collisional

relaxation, it is permissible to neglect all the transport effects in (3.20)-

(3.26). Thus, the layer in which the transport mechanisms are important,

referred to as the transport shock, is seen to have zero thickness on the

length scale defined by Xa . The characteristic electron temperature

(Te)b introduced in Section III appears now as the electron temperature

just behind the transport shock. Therefore in the outer solution or colli-

sional relaxation layer, the momentum and energy equations (3.22) and (3.23)
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become algebraic! It is possible then to evaluate the integration constants

in the right members of (3.22), (3.23) anywhere inside the collisional layer.

Evaluating them just behind the transport shock at stage b, (3.23) becomes

7(Th+aTe-(Th)b-ab) + Tj(a-a b)
a-a + 2 -b-b (4.5)

From (4.1c) and (4.3) we can neglect the second term in brackets in

(4.5) as compared to one. Since the first and last terms are 0(1) , it

is necessary that

Tj(a-ab) = 0(1) , or a- b = o(- -). (4.6)
T.

Our limit (4.lb) strictly implies that a does not change, from its

value behind the transport shock, over the collisional layer. However, it

7,8
is known that, for appreciable ionization, the electron temperature does

not have to be close to Tj . For all the numerical examples considered,

T. tends very weakly to its limits (Tjll0) , and therefore considerable

ionization can occur. Moreover, by neglecting (l/Tj) compared to unity,

the ionization can be predicted very accurately with a 16-20% error.7 '8

We now turn to the population rate equations. The brackets in (3.25),

(3.26) account for the combined forward and reverse reactions. Their

numerical values vary between zero and one. Only when the flow reaches

equilibrium, will the forward and reverse reactions balance and give zero

for the bracket terms.

In (3.25). both the right and left members are 0(1) under our limit.

Then, the population rate equation for the ionized level remains differential
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over the outer solution.

In (3.26), the left member is 0(8/a) which is small under (4.3).

The right hand side is 0(1) under (4.2c) and (4.4a). Thus, the left

member of (3.26) is negligible and 8 is given locally in terms of the

other dependent variables by equating to zero the right-hand side of

(3.26). The population rate equation for the excited level reduces to

algebraic!

da dS
If in.(3.24) we replace (See Appendix) da and d by their respec-

dn dn

tive expressions I1 and 12 we see that the right member is 0(1)

while the left-hand side is 0O1 ) and therefore it can be neglected
T.
I

under (4.lb). The electron energy equation also reduces to algebraic over

the outer solution. Namely, it reads

E - (I+I2) = 0 , (4.7)

which means, physically, that the heating (cooling) of the electron gas

through elastic collisions with the heavy particles is balanced by the

cooling (heating) due to inelastic collisions between the same two species.

We have shown that, over the outer solution, the system of five

differential equations (3.20) - (3.26) reduces to only one differential

equation, the one governing the population of the ionized level. Then, all

the dependent variables, except the degree of ionization, will adjust to

local conditions and can be expressed as functions of a , the only non-

equilibrium variable, since aE and B
E

can be expressed in terms of

T and p . We say that, over the collisional layer, the flow is in a
e

state of "autolocal equilibrium." The outer solution is then very simple

to obtain, for the problem is reduced rationally to quadrature.
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B. Inner Solution

By reducing our system of equations over the outer solution to only

one differential equation, it is clear that the boundary conditions at the

front of the shock wave, station a, cannot be satisfied. On the scale X

this means that a geometrically thin boundary layer must exist in which at

least some of the derivatives in (3.22)-(3.24) and (3.26) tend to infinity.

Considering the two lengths appearing in (4.2b), x must be scaled by X
e

instead of )A according to

x

dC l-dx , or = [X- ldx . (4.8)
ee

Then over the boundary layer we obtain

p = p(Th+aT) , (4.9)

(4.10)
pu = 1 ,

^
" " 4."_/2 du V

p +X - _ p1/2 du V e (4.11)
xd h [R(e '

e b

y(Th+aTe) + aTj + Tt + 2 3 2 du Kh pl h
2 3A h ~ fPTh d

AKe 'jl/2 dTe W2
-We P e ds 2R(T )b e ~~eb

(4.12)
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dT T X 2d
3 e e du d Ke ^1/2 el T T
2 d 

+

dC a dC d = h

-

e
u e j U

a EdC tT d ' (4.13)

2 1
1 dBa 1{ K12r aEBE ] + r 2[i~l. , (4.15)- +

- d =^ rl: l-a- a2 1- l L- a-
ada 1 A I 

a d5 r 1 |I Ic 1 -a-B 2 2 (4.15)

It is clear that in a layer scaled by Xe << , no appreciable

ionization or excitation can occur, since Xa characterizes both the

ionization and excitation processes. Effectively (4.14) states that

1 d is 0(.!) which is small under (4.1b); however is 0(1)

T. 

The right-hand side of (4.15) is 0(-
- ) while its left member is higher or-

T.

der because everywhere B is'much smaller than a . Therefore in (4.13) we

~1 dB~ 1 da
could neglect 1 dB as compared to . For the reasons explained in

ad- ~ dd

the Appendix we prefer to substitute these derivatives by their corresponding

expressions in the right of (4.14) and (4.15). Since XKe and e are
comparable lengths, the left member of (4.13) is 0(1) .Therefore, although

comparable lengths, the left member of (4.13) is 0(1) . Therefore, although
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ionization and excitation rates are small, these rates must be included in

(4.13). From the numerical point of view, it is possible to consider a

and B as constant at their initial value over the inner solution; therefore,

we do not wish to carry the asymptotic argument any further.

Notice that, since X can be comparable to %Ke ' XKh and X the

transport terms must be included in the momentum and energy equations. In

(4.12), aT. and BTI will cancel with similar terms appearing in the

integration constant W

Then over the inner solution, (i) the transport effects are relevant,

and (ii) although ionization and excitation are small, the inner solution

does not give frozen flow with respect to the population of ionized and

excited levels, for excitation and ionization rates must be included in the

electron energy equation. We shall take a and B constant at their

initial value. We say that inside the transport shock the flow is in a

state of "slight ionization and excitation."

Finally, we must mention that the error factor introduced by the

asymptotic procedure is seen to be I + o(l-)j over both the outer and

inner solutions.
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V. JUMP CONDITIONS

It is possible for the upstream flow not to be in local equilibrium.

In that case a precursor will appear ahead of the shock front (see Section

II). However, the flow in this precursor is seen as frozen in the length

scales defined by either e or A . There is also a possibility,
e

depending on the flow conditions, for the existence of a hot radiating

tail in equilibrium, behind the collisional layer, in which the flow will

reach complete thermodynamic equilibrium.ll Even in that situation, since

this tail is structured by the absorption of radiation, the flow in this

tail is seen to be in complete equilibrium on the length scale defined by

Xa . It is possible then, fromi our equations to evaluate the jump condi-

tions, denoted by [ ] , across both the outer and inner solutions.

A. Outer Shock Jump Conditions

At the end of the collisional layer (station c), thermal equilibrium

between the species is reached, so that Thc = Tec = Tc . Then, from our

equations (3.20) - (3.26) we can get the outer jump conditions, because the

flow derivatives outside the shock vanish in the length scale of the outer

solution. Therefore we get, in the physical variables

[pjU~j:=+1 . (5.1)it a = 0 , + pu 0 + 
C c C

together with the equation of state and

(Th)c = (Te)c = Tc I mc = aE(TcPc) , c = E(TcPc) (5.2)

Therefore, the flow at the end of the collisional layer will be in local
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equilibrium.

B. Jump Conditions Across Inner Shock

Since Xe k( A , the flow derivatives in the collisional layer

measured in the length scale A will be vanishing small. The same state-

ment holds if there is a precursor ahead of the shock. Then, if we know

the flow conditions ahead of the shock (station a) we can evaluate the

flow conditions just behind the transport shock (station b) from (4.9) -

(4.15). These jump conditions are given, in the physical variables, by

iU = O , + pua = , + = O . (5.3)
FuPb b 2 b

together with a=a=a
b

a B=Ba=8 b , the equation of state and

E(b) [A(b=) 1 [TA(b ) T[TI(b ) +T I2 (5.4)

from the electron equation (4.13).

Note that (5.4) does not give the generally accepted [Te = O across
b

the transport shock, but tells that there is an energy balance between the

electron-heavy particles elastic and inelastic collisions.

Although the conditions of shock discussed here do not appear to be

classical Rankine-Hugoniot relations, they effectively are. For the type

of shocks considered and under the assumptions made, (5.4) plays the role of

a thermodynamic equation of state.
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VI. METHOD OF SOLUTION

From our previous discussion, the method for structuring the shock

appears clear: (a) Evaluate the jump conditions across the inner and outer

shocks as discussed in Section V. (b) Solve the collisional layer: the

16,17
forward reaction rate coefficients can be expressed as functions of Te'

and aE and SE are also functions of p and Te . Then from (3.20) -

(3.24) and (3.26), which reduce to algebraic form over the outer solution,

we can express p, u , p , Th T
e

and 8 as functions of a alone.

Substituting these functions in (3.25), we have an equation of the form

da
da- = dn . (6.1)

Eq. (6.1) is integrated numerically, by Simpson's rule, between the

limits ca=a=ab and a=ac which are known from the jump conditions. This

integration will give a=a(n)=a(x) . Once a(x) is known, we can compute

the spatial distribution of the remaining dependent variables since they

are given in terms of a . The solution over the collisional layer is very

simple to obtain because the problem is reduced to quadrature. (c) Solve

the inner solution: The constants of integration are evaluated at a

Considering a and B constant over the transport shock, we introduce an

auxiliary dependent variable z through

dT X ^
e e u
e -e ) 2 (6.2)

Ke '
e

Using the equations of state and continuity to eliminate pressure and

density, we solve for the different derivative terms. We then eliminate
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the independent variable C , by dividing all the equation by (6.2) to

get

Th +aT
h e

u

2 (Th+aTe)
Uu

a

(Th) a + a(Te)a ^
+U

a
^ 1/2

1e() z
3 Ke T

e

-) ( ETh)a+a(Te)a]

XKh

AKe

1/2

T

e

- U
a

(6.3)

- (u-ua )

(6.4)

z

dz =3 e u
2X j1/2

dT Ke T /
e eI~

T "
e du

z + e du
u

e/2 

ei CT -T )
h e

u
3I T d3 

a a0

T W rdS )I d e ^u+ x+ -- -
T/7e

S

A 1/2

e (T ea

Ya:~u a ea
ea u

and in (6.5)
du d' dBdu, da, dBshould be replaced by their appropriate expres-
dC~ I d; '~ Id 

sions (6.3), (4.14) and (4.15) in terms of the other variables.

du

dT
e

dTh

dT
e

wherein

(6.5)

(6.6)

- az
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Numerical integration of (6.3) - (6.5) is initiated at the four-

dimensional singular point at state b using the limiting values of the

d Th dz
derivatives , ^ , as determined from (6.3) - (6.5) by

dT dT dT
e e e

1'H6pital's rule.

The numerical integration scheme used is a modification of the method

described in Ref. 18. Eqs. (6.3) - (6.5), in vector form, can be written

dw
-= (w,T (6.7 )

dT

where w = w(u,Th,z) . Then

w+l Wn + {[I] - 2A]} + 2. (l)] (6.8)

where A is the step size, [I] the identity matrix, and [Aij]n =

--1j , i,j=1,2,3. Matrix [A] is evaluated numerically at each step.

n

To obtain the spatial distribution of the variables, numerical integration

of (6.2) is required. Once the spatial distribution is known, the induced

electric field and charge separation can be computed.5

The computations, which were performed on the Brown University IBM

360 model 67 computer, require less than 5 minutes to perform.
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VII. RESULTS AND DISCUSSION

Numerical examples have been calculated for microscopic models of

argon and helium. The data are chosen from Ref. 5 (Figs. 1,2) and Ref. 11

(Figs. 3-10). All the results obtained for the collisional relaxation layer

and the transport shock are plotted as functions of the physical distance

x .

Both the inner solution (a to b) and the complete solution (a to c)

discussed here are true shock waves in the sense of nonlinear sound waves.

Although the interaction between electrons and heavy particles is weak, the

electrons are constrained by electrical forces and are forced to shock.

The transport shock and the collisional layer are interrelated, since the

former arises as the inner solution to the latter. Since the flow over the

inner solution is not totally frozen with respect to population of the

excited and ionized levels, ionization and excitation rates must be included

over the inner solution. Inelastic collisions are responsible for cooling

the electrons as the flow approaches the collisional layer, and they thus

prevent the light and heavy species from reaching thermal equilibrium on

the small scale of the transport shock, as would otherwise occur through the

elastic collision mechanism. The inclusion of the inelastic collisions is

also responsible for the new Rankine-Hugoniot state relation replacing

FTel = 0 across the transport shock. Although Foley and Clarke did not
b

obtain the correct value of Te behind an unstructured transport shock,

the electron temperature catches up to its correct value very quickly at

the beginning of the collisional layer for their numerical examples. In the

context of their assumptions, their treatment of Te across the transport

shock is self consistent. However, an incorrect initial value in Te for
e
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the structure of the collisional layer could give substantial discrepancies

in other dependent variables (cf. Fig. 3).

Our results for the outer solution were anticipated, on numerical

grounds, in Refs. 4 and 15, although our treatment of B over the

collisional layer is different from Ref. 4. In our model, no assumption is

made that every excited atom created will be immediately ionized and thus

a more realistic treatment of the ionization process is provided. Figs. 1

and 3 show typical solutions over the collisional layer for the conditions

noted. The asymptotic result is compared to the exact solution obtained

by solving simultaneously Eqs. (3.20) - (3.26) neglecting the transport

properties.

As the transport phenomena are included in structuring the inner

solution, an electron precursor evidently appears due to the electron

thermal conductivity (cf. Figs. 2, 4-10). The sharp rise in electron

temperature that might be expected behind the transport shock as a conse-

quence of the jump condition ela = 0 , actually occurs at its beginning
[eb

due to K
e

Over the inner solution, the actual rise in the degree of ionization,

for all the examples evaluated, is less than 6%. In Fig. 2, the inner

solution was computed twice for two disparate values of 8 . We can see

that the two results are almost identical. This is due to the fact that

6 is everywhere much smaller than a , its numerical value not affecting

the results. Thus, our results clearly validate the treatment of a and

B as constant at their initial values over the transport shock.

If we are not interested in the transport effects, it is possible to

disregard the structure of the inner solution. However, with the use of our

jump conditions, we can evaluate the correct flow variables behind the
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transport shock. One could neglect the structure of the heavy particle

transport properties (cf. Figs. 5, 8, 10) and treat this as a discontinuity

representing an "innermost" solution within our inner solution, structured

solely by electron conductivity; but this simplification will not always be

possible, because matching difficulties will appear. This innermost

solution can not be realistically embedded by an asymptotic argument on the

length scale of the inner solution. For the numerical examples evaluated,

the thickness of this innermost solution is about 25-30% of the total thick-

ness of the inner solutions given.

There are some cases in which the asymptotic method discussed here will

not give satisfactory results particularly in the case of the lighter gases,

depending on how strongly the gas parameters will tend to their respective

limits (4.1) and (4.2). If the gas is lighter (6 diminishes), the elastic

coupling between electrons and heavy particles increases. For helium, for

instance, only one of the numerical examples considered (cf. Fig. 6) was

successful, the one corresponding to the smaller degree of ionization of

the upstream flow (a
a
= 0.0412). As aa increases (aa X 0.1), the electron

temperature behind the transport shock increases, due to coupling effect,

by a factor of 2 with respect to a similar argon example. At these high

temperatures, and with the initial concentration of electrons corresponding

to a = 0.1 , X and A can become comparable and our asymptotic pro-
a e a

cedure will fail, since appreciable ionization will occur inside the trans-

port shock. The inner solution for the helium case we have been able to

evaluate is shown in Fig. 6. The outer solution for this example can be

found in Ref. 15.

All the assumptions upon which this model is based are completely

justified a posteriori. The values obtained for the induced electric field
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and charge separation are indeed very small. The initially frozen elastic

and inelastic collision assumption used to structure the shock is also

justified; a difference of 2 - 3% in the results appears according as it

is used (as shown explicitly in Eq. (6.5)) or not used.

Finally, we must mention the work by Magretova, Pashchenko and Razier1 9

who studied a strong shock in air. Taking into account the thermal con-

ductivity of the electrons as the only transport mechanism, they found an

electron precursor. The heating of the electron gas is said to produce

appreciable ionization before the heavy gas is shocked. With our model,

no such ionization appears in the electron precursor for any of the exam-

ples we have evaluated.

The method presented herein can be used, if desired, together with

the work of Foley and Clarkel l to obtain the full structure of a shock

wave when radiative as well as collisional effects are to be taken into

account, providing a rational description of the kinetics of the collisional

and radiative ionization reactions at high temperatures.
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APPENDIX: ALTERNATE ARGUMENT

Over the outer solution it is clear that do is much smaller than
a dn

1 da
a dnas seen from (3.25) and (3.26) under the asymptotic argument in

Section IV. Therefore, in (3.24) we can neglect the former term as compared

to the latter. If in (3.24) we substitute 1 dc by its corresponding
a dd

expression I1 and neglect the left hand side which is 0 -) ,and 1 dB
T.

we get

T (X 2 1-E- 2Rr, e(Th-Te) - E l-n-B e 2 8 (Ap.l)

u LE E

Now, from (3.26), we can write

r2 -~ a ] = _ [ - l-- +o(. -) * (Ap.2)r2 a2 K18 1---0 +

Thus (Ap.l) can alternately be written as

"1/2 2-

1 ( -T e) E E Xl_- .L - 0 .(Ap.3)1 e (Th-T e)'1 l-a- 2

L - 8 -E

We can verify very easily that (Ap.3) is precisely the form (3.24) takes on

besides a factor of

T. T.

multiplying the last term) when we substitute in it a dn and l dn by
a dnl a dnl
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their corresponding expressions I1 and I2 . The difference between

(Ap.l) and (Ap.3) is seen to be of a higher order.

On physical grounds, we prefer Eq. (Ap.3) to Eq. (Ap.l), because

(Ap.3) states explicitly that, over the outer solution, the three difficult

processes introduced in Section II, namely energy transfer between heavy

and light species through elastic collisions, ionization from the ground

level, and excitation from the ground level give the energy balance of the

electrons.

The above argument also holds in the discussion of the inner solution

1 dB 1 dco
since a dB can be neglected as compared to - , because B is every-

a d a d

where much smaller than a according to the microscopic model of Section

II. We also prefer, for the reasons explained above, to substitute in

(4.13) da and d' by their expressions in the right of (4.14) and (4.15)

respectively, to get

dT T dT
3 e e du 1 d Ke -1/2 el

2 d u dC a dC e e dc
u dT

e (1/ -T2 1- - I

Te2 1 r a2 l-aE-BEl TZ K1-2 B 1-aE-aE

u r l l-a-B a2 T. l-c BE C' l- EB l-orE-i

rl 

-rl (1 ) [ B C (Ap.4)
1 T TT

It is clear that the last term in the right of (Ap.4) can be neglected

under (4.1c).
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Thus we see that in the outer solution as well as in the inner

solution, substituting the ionization and excitation rates by their cor-

responding expressions is equivalent to neglect the excitation rate as

compared to the ionization rate, the difference between these two alterna-

tives being higher order. However, we prefer the former to the latter

because of its physical meaning, particularly over the collisional layer.
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APPENDIX A

TRANSPORT PROPERTIES

The mathematical expressions for the different coefficients of

viscosity and thermal conductivity are taken from Ref. 5. If a.. denotes

the elastic collision cross section for an encounter between particles of

the ith and jth species and subscripts a , e , and i refer to atoms (in

the ground and excited levels), electrons and ions respectively, we have

Heavy transport coefficients

The coefficient of shear viscosity of the mixture is

uh P(RTh) /2 '
(A.1)

where X is a characteristic length defining the viscosity of the heavy

particles. We can express X in terms of the different elastic cross

sections and therefore in terms of the dependent variables, i.e.

5,' 1
U 6 naa aa

or

X _5 ; mh 1 l-a

66 P (1-a)aa O aia

1-a Oaa_ aa

a
aa a

I+ ia _ ii
n a.
a la

+ aa a
a. a..ia a ii

1 + 1a a.
ia

The coefficient of thermal conductivity

given by

of the heavy particles Kh , is

(A.2)

(A.3)
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Kh = pR(RTh) 1 /2XKh, (A.4)

AKh being a characteristic length for the heavy thermal conductivity and

it is defined by

_ 75/; h 1
Kh 64 P (1-a) aa a.a la

1-a a
aa

+ aa a.

la a1 1
1-a ai.l+ a~ ~ ia+1- i J

(A.5)

From the definitions of A and AKh we can see that
kKh ' ecnseta

-Kh 75 6 45
p 64 5 3'2 '
.

(A.6)

Thus both lengths characterizing the transport properties of the heavy

gas are almost the same.

Electron transport properties

The viscosity of the electrons can be neglected as compared to the

viscosity of the heavies due to the small mass ratio of the two species.

Since Pe = 0 , the viscosity of the mixture will then be given by

(A.7)= 1h + !e = Ph ·

The electron thermal conductivity is given by

Ke = aRp(RTe)1/2 Kee, e Ke ' (A.8)

where A
Ke

defined by

is a characteristic length for the electron thermal conductivity,



35

ina -1
75/ 6 1+F 2) + /2naea

Ke 64 n aei (l))nl+ a ea

= 75(hl+v(lm + /i 1-a i (A.9)
64 p aaei l-i-/1+/2 a aei j

The energy transfer between heavy and light species through elastic

collisions E is given by5

E (RT)1/2 Th -Te 1E = (RTe) u A 9 (A.10)e

A being a characteristic length defining this type of energy transfer,

defined by

X p Eh 6 ei (A.11)
e 8 2 p a°eia

It is clear from (A.9) and (A.11) that both AKe and he are

comparable lengths.

Moreover, on numerical grounds, and depending mainly on the flow con-

ditions, the characteristic lengths defining the transport properties A

xKh , and AKe can be comparable, and therefore A /AKe , Kh//Ke can be

non-neglibible quantities. Our results prove the validity of the above

argument.

Since

A A A A
A A Ke e x = (A.12)

Ke e a T.
I
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Kh -Kh XKe Xe (A.3)

a Ke e a Tj

Ke = Ke e (A.)
~ y- =0 4, (A.14)

a e a T.

We can neglect all the transport properties over the outer solution charac-

terized by Xa within the orders of magnitude and limits constructed in

(4.1) and (4.2).
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APPENDIX B

COLLISIONAL STATISTICS

In this appendix expressions for all the cross sections and reaction

rates are provided for both argon and helium.

Elastic Cross Sections:

1. Argon: All the cross sections for argon are taken from Ref. 5.

These cross sections in terms of the flow variables are:

e e 2nA k3T
3

1/2
aei 2 2c cm3 e A =)/ (B.1)

ei 2 (k 2 cm , Ae = 2e3 e

4 JnA k3T3 1/2
we i 2

0 ii w 2 cm2 A, (B.3)
l =2 (kTh)2 1 2e e

where e is the magnitude of the electronic charge, and k the Boltzmann

constant. The remaining cross sections are

1.7 -14 2
aaa = 1i/4 x 10 cm (B.3)

Th

ia
i. =1.4 x10 14 cm2 ,

[-0.35 + (0.775x10- )T ] x 10 cm2 for T > 10 O K~~~e e

ea { (B.4)

[0.39 - (0.551x10 4)Te + (0.595x10-8 )T2] x1016 cm2 for

T < 104 °K
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2. Helium: The cross sections for collisions between charged

particles are the same as for argon, i.e., a ei and aii are given by

(B.1) and (B.2), since the cross sections are independent of the masses

of the particles involved.

From Ref. 11

-16 2
a = 5 x 10 cm (B.6)
ea

From Hirchsfelder et al, the average cross section for the computa-

tion of viscosity and thermal conductivity is given by

Q(2.2) = 1 x3Q(2)(xkT)exp(-x)dx , (B.7)

0

where Q(2) denotes the interaction potential for the colliding molecules.

From Ref. 12, the interaction potential for an atom and an ion is

given by the empirical expression:

Q(2) = [48.0-6.96Zn(xkT+0.4) x10-16cm2 (B.8)

expressing kT in eV . Expanding the logarithmic term

xkT +1 xkT _in(xkT+0.4) = InO.4 + 2kT 8xkT0.8 

T
=--n0.4 + 2

0+T
x

Substituting (B.9) into (B.7), we obtain

Cia = X (4 )[4 8.0-6. 9 6 9.nO.4] - 6.96 x 2 -T-(exp(-x)dx X 10 cm . (B.10)
ia f4-r 3-l4
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T
Since 0 T < 1 , we take an average for the above integral to get

104
-+T

X

-16 2o. = 71 x 10 cm .
la

(B.11)

From Monchick,2 1

is given by

the average cross section for atom-atom collisions

22
8a2p2I
8c = (2,2) 2 2

i = 2ap (2,2) '
3!(1 - )3

A
where a = zin and

interaction potential

interaction potential

A and p are related in the expression for the

* = A exp(-r/p) , (B.13)

with p in angstroms. Monchick gives a tabulation for I(2,2) as function

of a . From Ref. 22 we have for the H -H interaction
e e

A = 157 ev,
o

p = 1/3.93 A .

For our range of temperature 300° < T
h

< 1300000, we can extrapolate

Monchick's results. The difference in the values of I(2,2
)

is not very

significant however. By taking an intermediate value

(B.15)I(2,2) = 0.512267 ,

corresponding to a = 4.5 , we obtain

aa = 0.066291 [14.4137 - n Th]
2
x 10 16cm2 (B.16)

(B.12)

(B.14)
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Inelastic Processes

All the inelastic processes considered are those involving chemical

reactions by electron impact as given by (2.1).

According to these reactions, we can write

dnedn 3 3

dt = l -cnln e - c-ln e + K2-cn2ne c-2ne (B.17)

dn2 3

dt K1-2nlne K2-1n2ne + Kc-2ne - K2-cn2ne (B.18)

where in (B.17) and (B.18) the number densities can be written in terms of

p , a and B . We know from equilibrium considerations that

nl l-a E- a
ic nBlaE (B.19)K2-1= kl-2(2E 1-2 

n 1 mh 1 - E-B E

Kc_1 K-Ic I 2 l-c p a2 (B.20)

n2 = 2Cmh BE
Kc-2 =i 2 -2-} p- 2 ' (B.21)

ne E E

where E denotes equilibrium conditions.

We write a E and B
E

in terms of the dependent variables. Then

1-bE-BE _1 gO + gl exp(-T,/Te) exp(Tj/T )
2E g°~~ -gl 3/2p(-TT' (B.22)

2 2 mh g 
+
gl exp(-Tp/Te) mT 3/2

E 0 _ ekTe '
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E , 1 p9 exp[(Tj-T )/Te]
2 2 m

h
+ +

a 2E h g00 gl exp(-Tp/T e) 2im kT 3 /
2

h2

B1-E-BE go
= 1 + exp(T t/Te ) I

(B.23)

(B.24)

where k is the Boltzmann constant, h the Planck constant, and gi and

gi are the degeneracy factors in the electronic partition functions for

atoms and ions respectively.

We now need expressions for the forward reaction rate coefficients.

From Refs. 16 and 17 we have

(3.84x10- 6)y exp(-y)
p-q A1 /4 (y2 7 + 1P- .A (Y + -v-Y'

where X is the potential difference
expressed in eV , and

expressed in eV , and

A = p-
Xp-q

Y=
kT

e

-1.5 cm3/s

p-q

between levels p and q

A+30
10A+25

The numerical values taken for argon and helium are

Helium = 1 , gl = 16 , go 2 , g ,Helium
T. = 2850000 K , T = 2448000 K ,
] J 

and

(B.25)

(B.26)

(B.27)

(B.28)

t =
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go = 1 , g 12 g= , g; = 2(B.29)
Argon 

T = 1830000 K , T. 1340200 K , T = 20650 K . (B.30)

Expressions (B.22) - (B.24) are to be substituted in the rate equations

for the population of the excited and ionized levels in the appropriate

dimensionless form defined in Section III.
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LIST OF CAPTIONS

FIG. 1. Outer solution, Argon. 1= .5x10-4 atm., (T) Te)a 1000K ,

Tc 117000 K , a = 0.1 (aE)
a

Ba = 0.0001 i (BE) Solid lines:

Asymptotic solution. Broken lines: Exact solution for same initial condi-

tions. Ti = Ti/(Th)b

4
FIG. 2. Inner solution, Argon. pa 1.5xlO

-

atm., (Th)a = (T )a

10000K. Tc = 117000 K , aa = 0.1 (aE)a . Solid lines. Asymptotic

a
results for 

a
= 0.0001 o (BE)a. Dotted lines: Asymptotic results for

a = 0.00059 9 (aE) Broken]lines: Ref. 5 results for same initial

conditions but with no excited level in atom model. u u/ = b , T =

Ti/(Th)b

FIG. 3. Outer solution, Argon. Pa = 10-
4

atm., (Th) = 9610 K, (T) =

54510 K , Tc = 194600 K , aa = 0.231 f (aE)a , 8a = 0.000219 i (BE)a

Solid lines: Asymptotic solution. Dotted lines: Asymptotic solution for

different initial conditions (Ref. 11). Broken lines: Exact solution for

different initial conditions (Ref. 11).

FIG. 4. Inner solution, Argon. Pa = 10o atm., (Th)a = 9610 K, (Te)a =

54510 K , Tc = 194600 K , aa = 0.231 0 (aE)
a

', a = 0.000219 A (BE)a

Solid lines: Asymptotic solution. Broken lines: Ref. 11 results for

different atom model. P = P/Pb , Ti = Ti/(Th)b

FIG. 5. Inner solution, Argon. Same initial conditions as in Fig. 4 but

without heavy particle transport properties. p = P/Pb , T = Ti/(Th)b1bihb
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FIG. 6.

45000K ,

P P/Pb

Inner solution, Helium. Pa = 10 atm., (Th) = 6000 K , (Te ) =

Tc = 234000 K , aa = 0.0412 $ (aE)a ', a = 0.0000539 9 (BE)a 

T.i= Ti/(Th)b

FIG. 7. Inner solution, Argon. P = 10 atm., (Th) =9000 K (Te a

68000 K , Tc = 220000 K , aa = 0.205 ; (aE)
a

' a = 0.000108 / (BE)a

Solid lines: Asymptotic solution. Broken lines: Ref. 11 results for

different atom model. P = P/Pb , T = Ti/(Th)b

FIG. 8. Inner solution, Argon. Same initial conditions as in Fig. 7 but

without heavy particle transport properties. P = P/Pb , Ti = Ti/(Th)b

Pa =

~1 0 -
ar.,[hb

a

FIG. 9. Inner solution. Argon Pa = 10 atm., (Th) =

(Te)a = 46000 K , Tc = 170000 K , aa = 0.250 # (aE)
a

, Ba

(BE) a . Solid lines: Asymptotic solution. Broken lines:

for different atom model P = ,/pb T, i = Ti/(Th)b
P = P/1 b ' i i O 

9700 K ,

= 0.000482 $

Ref. 11 results

FIG. 10. Inner solution, Argon. Same initial conditions as in Fig. 9

but without heavy particle transport properties. 0 = P/Pb , T i/(Th)b 
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